Formula Sheet

Charles Duan

1 Kinematics

Velocity-distance relation under constant accelera-
tion. Given an initial velocity vy and a distance d:

v? =092 4 2ad
Projectile motion distance:
v? sin 26

g

Center of mass:
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2 Relativity

2.1 Kinematics
Let A be the “fixed” observer and B an observer mov-
ing with velocity v relative to A.

Loss of simultaneity. For two clocks a distance L
apart in A’s frame that are reading the same time in
that frame, the “rear” clock from B’s point of view
will be faster by a factor of:

Beta and gamma factors:
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Time dilation and length contraction:

Ly
tp =7ta; Lp = —
v
Velocity addition. Say A observes a motion of veloc-

ity v4, then the velocity with respect to B is:
va + v

v =

Py VU4 /2

Lorentz transformations. Given that A has a coordi-
nate system of (x,y, z,t), the coordinate system for
Bis (2',y,z,t") where:

Az = y(Ax' +vAl), At =1~ (At’ + :—2Aa:’>
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Time-space invariant. Given, for two events:
As? = AN — Az?

The value As? is the same in any frame of reference.

2.2 Dynamics

We are given an observer and some system of mass
m moving at a speed v.

Momentum and energy:
p = ymv, E = ymc?
Energy-momentum relations:
m2ct = B2 — 22, £ —

P
E ¢
Energy/momentum for photons:

E =pc

Lorentz transformations for energy. Given a frame of
reference moving with speed v, that measures for a
system E’ and p’, we find in the nonmoving frame:

v
E=~(E +uvp'), p=2 (p’ + C—QE’)

Relativistic force:

dp dE

F=ntme =G =0

3 Rotational Motion

Rolling without slipping;:

Moment of inertia:
I =% myr?=[r’dm

Parallel axis theorem. Given an axis of rotation par-
allel to an axis through the center of mass:

I, = Iy + Md?



Perpendicular axis theorem. Given a planar object,
with the z axis normal to it:

I, =1,+1,
Definition of torque:
T=rxF;, 7=rFsinf
Torque and angular acceleration:

=1
Definition of angular momentum:
L=rxp= [(rxv)dm; L=rpsinf

Torque and angular momentum. Given a center of
rotation that is fixed either in an inertial frame or on
the center of mass:

dL
dt

F:

Angular momentum and velocity. For a system that
is only rotating about a single axis:

L=1w

Angular impulse. In a system where a force is applied
at a constant distance r from the point of rotation:

AL =rAp

Translation and rotation. Given an object with an-
gular momentum L’ about its own center of mass, the
angular momentum about any other center is:

L=MRcy X vey + L/

4 Harmonic Motion

Given a differential equation of the form y” = —w?y,
the solution will be:

y = Acos(wt + ¢)

The constant w is the angular frequency. The period
T and frequency v are:

T:2—7r Ij:l:i
w

For a spring, w = /k/m; for a pendulum, w = /g/I.
For a physical pendulum with moment of inertia at
the pivot a distance d from the cMm, w = y/mgd/I.

Damped motion. Consider a damping force F' = —bv
and a harmonic force F' = kx. Then define:

k b ,
e
There are three possible cases:

Under
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wo® = =wy” =7, Q" =7"—wo

y<wy x(t) = Ae " cos(w't + ¢)
Over v>wy x(t) = Ae” T L Bem (-
Critical v=wy z(t) =e (A + Bt)

Driven oscillation. In addition to the damping —bv

and harmonic kx forces, consider a driving force
Fy(t) = F coswgt:

F
t) = — t—
z(t) = 5 cos(wat — ¢)
with the following constants:
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5 Universal Gravitation

Newton’s Law of gravitation:

2
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2 where G = 6.6726 10*111{—;1

The units of G’ can also be m?kg~!s72.
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Gravitational potential:

Gmim
U(r) = A UL
r
Kepler’s Laws. The planets move in elliptical orbits,
they sweep out equal areas over equal times, and for

an orbit with semimajor axis a and period T"
4n2a’

T2 =
GMSUII

6 Fictitious Forces

In an accelerated reference frame R with rotation &,
the force on an object is the sum of the real forces on
it and the following “fictitious forces”:

2
Translational : —mﬂ
dt?
Centrifugal: —md@ x (J X r)
Coriolis: —2mw& X v
Azimuthal: _md_o.) < r
dt



